Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.262
Filtrar
1.
Sci Rep ; 14(1): 9401, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658643

RESUMO

This study evaluated the impacts of sulfamethoxazole (SMX) on antioxidant, immune, histopathological dynamic changes, and gut microbiota of zebrafish. SMX was carried out five groups: 0 (C), 3 mg/L (T3), 6 mg/L (T6), 12 mg/L (T12), and 24 mg/L (T24), with 5 replicates per group for an 8-weeks chronic toxicity test. It was found that SMX is considered to have low toxicity to adult zebrafish. SMX with the concentration not higher than 24 mg/L has no obvious inhibitory effect on the growth of fish. Under different concentrations of SMX stress, oxidative damage and immune system disorder were caused to the liver and gill, with the 12 and 24 mg/L concentration being the most significant. At the same time, it also causes varying degrees of pathological changes in both intestinal and liver tissues. As the concentration of SMX increases, the composition and abundance of the gut microbiota in zebrafish significantly decrease.


Assuntos
Microbioma Gastrointestinal , Fígado , Sulfametoxazol , Poluentes Químicos da Água , Peixe-Zebra , Animais , Sulfametoxazol/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ecossistema , Brânquias/efeitos dos fármacos , Brânquias/patologia
2.
Environ Sci Pollut Res Int ; 30(41): 94205-94217, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37526819

RESUMO

To reveal the influence of the phosphorus chemical industry (PCI) on regional water environmental quality and safety, the water quality and ecotoxicological effects of a stream near a phosphorus chemical plant (PCP) in Guizhou Province, southwestern China, were investigated based on water samples collected from the stream. The results showed that the average concentrations of NH3-N, TN, P, F-, Hg, Mn, and Ni were 3.14 mg/L, 30.09 mg/L, 3.34 mg/L, 1.18 mg/L, 1.06 µg/L, 45.82 µg/L, and 11.30 µg/L, respectively. The overall water quality of the stream was in the heavily polluted category, and NH3-N, TN, P, F-, and Hg were the main pollution factors. The degree of pollution was in the order of rainy period > transitional period > dry period, and the most polluted sample site was 1100 m from the PCP. After 28 days of exposure to stream water, there was no significant change in the growth parameters of zebrafish. The gills of zebrafish showed a small amount of epithelial cell detachment and a small amount of inflammatory cell infiltration, and the liver tissue displayed a large amount of hepatocyte degeneration with loose and lightly stained cytoplasm. Compared with the control group, the %DNA in tail, tail length, tail moment, and olive tail moment were significantly increased (p < 0.05), indicating that the water sample caused DNA damage in the peripheral blood erythrocytes of zebrafish. The stream water in the PCI area was found to be polluted and exhibited significant toxicity to zebrafish, which could pose a threat to regional ecological security.


Assuntos
Indústria Química , Rios , Poluentes da Água , Poluição Química da Água , Poluentes da Água/análise , Poluentes da Água/toxicidade , Qualidade da Água , Peixe-Zebra/crescimento & desenvolvimento , Animais , China , Distribuição Aleatória , Rios/química , Brânquias/efeitos dos fármacos , Fígado/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Amônia/análise , Fósforo/análise , Estações do Ano
3.
Oxid Med Cell Longev ; 2022: 5450421, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126815

RESUMO

Bisphenol A (BPA) is one of the environmental endocrine disrupting toxicants and is widely used in the industry involving plastics, polycarbonate, and epoxy resins. This study was designed to investigate the toxicological effects of BPA on hematology, serum biochemistry, and histopathology of different organs of common carp (Cyprinus carpio). A total of 60 fish were procured and haphazardly divided into four groups. Each experimental group contained 15 fish. The fish retained in group A was kept as the untreated control group. Three levels of BPA 3.0, 4.5, and 6 mg/L were given to groups B, C, and D for 30 days. Result indicated significant reduction in hemoglobin (Hb), lymphocytes, packed cell volume (PCV), red blood cells (RBC), and monocytes in a dose-dependent manner as compared to the control group. However, significantly higher values of leucocytes and neutrophils were observed in the treated groups (P < 0.05). Results on serum biochemistry revealed that the quantity of glucose, cholesterol, triglycerides, urea, and creatinine levels was significantly high (P < 0.05). Our study results showed significantly (P < 0.05) increase level of oxidative stress parameters like reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) and lower values of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) in treated groups (4.5 mg/L and 6 mg/L)) in the brain, liver, gills, and kidneys. Our study depicted significant changes in erythrocytes (pear shaped erythrocytes, leptocytes, microcytes, spherocytes, erythrocytes with broken, lobed, micronucleus, blabbed, vacuolated nucleus, and nuclear remnants) among treated groups (4.5 mg/L and 6 mg/L). Comet assay showed increased genotoxicity in different tissues including the brain, liver, gills, and kidneys in the treated fish group. Based on the results of our experiment, it can be concluded that the BPA exposure to aquatic environment is responsible for deterioration of fish health, performance leading to dysfunction of multiple vital organs.


Assuntos
Compostos Benzidrílicos/toxicidade , Encéfalo/efeitos dos fármacos , Carpas/sangue , Carpas/genética , Dano ao DNA/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Brânquias/efeitos dos fármacos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenóis/toxicidade , Transdução de Sinais/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Compostos Benzidrílicos/administração & dosagem , Encéfalo/metabolismo , Encéfalo/patologia , Catalase/metabolismo , Ensaio Cometa/métodos , Sequestradores de Radicais Livres/metabolismo , Brânquias/metabolismo , Brânquias/patologia , Hematócrito , Rim/metabolismo , Rim/patologia , Contagem de Leucócitos , Fígado/metabolismo , Fígado/patologia , Fenóis/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
4.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35216042

RESUMO

In aquatic organisms, cadmium exposure occurs from ovum to death and the route of absorption is particularly wide, being represented by skin, gills and gastrointestinal tract, through which contaminated water and/or preys are ingested. It is known that cadmium interferes with the gut; however, less information is available on cadmium effects on an important component of the gut, namely goblet cells, specialized in mucus synthesis. In the present work, we studied the effects of two sublethal cadmium concentrations on the gut mucosa of Danio rerio. Particular attention was paid to changes in the distribution of glycan residues, and in metallothionein expression in intestinal cells. The results show that cadmium interferes with gut mucosa and goblet cells features. The effects are dose- and site-dependent, the anterior gut being more markedly affected than the midgut. Cadmium modifies the presence and/or distribution of glycans in the brush border and cytoplasm of enterocytes and in the goblet cells' cytoplasm and alters the metallothionein expression and localization. The results suggest a significant interference of cadmium with mucosal efficiency, representing a health risk for the organism in direct contact with contamination and indirectly for the trophic chain.


Assuntos
Cádmio/efeitos adversos , Trato Gastrointestinal/efeitos dos fármacos , Peixe-Zebra/metabolismo , Animais , Trato Gastrointestinal/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metalotioneína/metabolismo , Poluentes Químicos da Água/efeitos adversos , Zinco/metabolismo
5.
J Toxicol Environ Health A ; 85(7): 291-306, 2022 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-34879786

RESUMO

Triclosan (TCS) is a synthetic broad-spectrum antimicrobial agent commonly used world-wide in a range of personal care and sanitizing products detected frequently in aquatic ecosystems. The aim of this study was to examine biochemical markers responses triggered by TCS in Danio rerio and in a native South American fish species (Corydoras paleatus). Further, an integrated approach comparing both test fish species was undertaken. These fish organisms were exposed to 100 or 189 µg TCS/L for 48 h. The activities of catalase (CAT), glutathione-s-transferase (GST), superoxide dismutase (SOD), and lipid peroxidation levels (LPO) and total antioxidant capacity against peroxyl radicals (ACAP) were determined in liver, gills, and brain. Acetylcholinesterase activity (AChE) was measured in the brain. Multivariate analysis showed that the most sensitive hepatic parameters were activities of GST and SOD for C. paleatus while LPO levels were for D. rerio. In gills the same parameters were responsive for C. paleatus but CAT in D. rerio. ACAP and GST activity were responsive parameters in brain of both species. Integrated biomarker responses (IBR) index demonstrated similar trends in both species suggesting this parameter might serve as a useful tool for quantification of integrated responses induced by TCS.


Assuntos
Anti-Infecciosos Locais/toxicidade , Biomarcadores , Estresse Oxidativo/efeitos dos fármacos , Triclosan/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Peixes-Gato , Brânquias/efeitos dos fármacos , Brânquias/enzimologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Peixe-Zebra
6.
Aquat Toxicol ; 242: 106044, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34861573

RESUMO

Aluminium (Al) is soluble in acidic waters and may become toxic to organisms. In this study, the acute effects of two Al concentrations were evaluated in the Amazonian fish Bryconops caudomaculatus. Antioxidant responses and lipid damage were assessed in gills, liver and muscle, along with the electrocardiography (ECG) and characterization of cardiac complex and wave intervals. Fish were essayed as follows: two control groups at neutral and acidic pH and two exposure groups at acidic pH (0.3 mg/L and 3.0 mg/L Al). Water samples were collected at 0h, 24h and 48h, for chloride (Cl-), fluoride (F-) and sulphate (SO42-) ion analyses, while total Al was quantified in muscle. Concentrations of Cl- and SO42- were constant over time whereas F- was not detected. Total Al concentrations in water and muscle were concentration-dependent. Antioxidant responses, total antioxidant capacity against peroxyl radicals (ACAP) and glutathione S-transferase were not triggered in fish tissues exposed to 0.3 mg/L Al; however, fish exposed to 3.0 mg/L Al presented increased and reduced ACAP in gills and liver, respectively. No changes in lipoperoxidation levels occurred among groups. Fish exposed to 0.3 mg/L Al showed prolonged intervals in ECG as a reflection of low heart rate (HR), with sinus bradycardia. Moreover, there was a marked prolongation of the PQ interval (time between the atrial activity and the start of ventricular activity), indicating interference on the cardiac cell automaticity. Fish exposed to the highest concentration of Al showed reduced wave intervals as a consequence of increased HR, with sinus arrhythmia, while ECG tracings did not present P waves (atrial contraction), indicating an atrioventricular blockade. In conclusion, 48h exposure sufficed to cause cardiotoxicity in B. caudomaculatus at either Al concentration. However, as oxidative stress was not observed, such cardiac alterations seem to be reversible under the experimental conditions established herein.


Assuntos
Alumínio/toxicidade , Cardiotoxicidade , Caraciformes , Poluentes Químicos da Água , Animais , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Coração/efeitos dos fármacos , Peroxidação de Lipídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade
7.
Bull Environ Contam Toxicol ; 108(3): 571-578, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34853901

RESUMO

Gill is the frontier tissue to come in direct contact with aquatic toxicants. Malachite green (MG) commercial textile dye was assessed for its impact on the gill cytoarchitecture. Cyprinus carpio were exposed to 0.087 and 0.146 mg/L of MG for 60 days. The tissue was processed, and HE stained slides revealed histo-pathic lesions such as lamellar curling, edema, necrosis, telangiectasia, aneurysm, and vacuolization. Scanning electron microscopy reported aberrations in lamellae and microridges of the epithelium. At the cellular level, transmission electron microscopy exhibited nuclear alterations in form of pyknosis and mitochondrial swelling followed by cristolysis. Pillar cells displayed cytoplasmic vacuolization and leukocyte infiltration, and goblet cell containing varied shaped and density mucous globules. The biochemical analysis supported the ultrastructural alterations and showed a negative impact of MG on the antioxidative enzymes (CAT, SOD, GSH), while levels of MDA were found to be significantly elevated. Thereby, concluding MG induced branchial toxicity in the fish.


Assuntos
Carpas , Brânquias/efeitos dos fármacos , Estresse Oxidativo , Corantes de Rosanilina , Poluentes Químicos da Água , Animais , Brânquias/patologia , Corantes de Rosanilina/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
8.
Sci Rep ; 11(1): 23670, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880395

RESUMO

Among cases of SARS-CoV-2 infections that result in serious conditions or death, many have pre-existing conditions such as hypertension and are on renin-angiotensin-aldosterone system (RAAS) inhibitors. The angiotensin-converting-enzyme-2 (ACE2), a key protein of the RAAS pathway, also mediates cellular entry of SARS-CoV-2. RAAS inhibitors might affect the expression levels of ace2, which could impact patient susceptibility to SARS-CoV-2. However, multi-organ-specific information is currently lacking and no species other than rodents have been examined. To address this knowledge gap, we treated adult zebrafish with the RAAS inhibitors aliskiren, olmesartan, and captopril for 7 consecutive days and performed qRT-PCR analysis of major RAAS pathway genes in the brain, gill, heart, intestine, kidney, and liver. Both olmesartan and captopril significantly increased ace2 expression in the heart, gill, and kidney. Olmesartan also increased ace2 expression in the intestine. Conversely, aliskiren significantly decreased ace2 expression in the heart. Discontinuation of compound treatments for 7 days did not return ace2 expression to baseline levels. While potential risks or benefits of antihypertensive RAAS inhibitors to SARS-CoV-2 infections in humans remain uncertain, this study provides new insights regarding the impact of RAAS inhibitors on organ-specific ace2 expression in another vertebrate model, thereby providing comparative data and laying scientific groundwork for future clinical decisions of RAAS inhibitor use in the context of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Peixe-Zebra/metabolismo , Amidas/farmacologia , Enzima de Conversão de Angiotensina 2/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , COVID-19/patologia , COVID-19/virologia , Fumaratos/farmacologia , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Humanos , Imidazóis/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Modelos Animais , SARS-CoV-2/isolamento & purificação , Tetrazóis/farmacologia
9.
PLoS One ; 16(9): e0247739, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34492016

RESUMO

Metaplasia is a well documented and deleterious effect of crude oil components on oysters. This reversible transformation of one cell type to another is a common response to petroleum-product exposure in molluscs. It has been shown experimentally in previous work that eastern oysters (Crassostrea virginica) exposed to petroleum products will exhibit metaplasia of digestive tissues. Here we document for the first time that wild adult oysters inhabiting coastal waters in the northern Gulf of Mexico during and in the aftermath of the Deepwater Horizon oil spill (2010) exhibited metaplasia in both ctenidial (respiratory and suspension feeding) and digestive tract tissues at significantly higher frequencies than geographic controls of C. virginica from Chesapeake Bay. Metaplasia included the loss of epithelial cilia, transformations of columnar epithelia, hyperplasia and reduction of ctenidial branches, and vacuolization of digestive tissues. Evidence for a reduction of metaplasia following the oil spill (2010-2013) is suggestive but equivocal.


Assuntos
Crassostrea/efeitos dos fármacos , Trato Gastrointestinal/patologia , Brânquias/patologia , Poluição por Petróleo/efeitos adversos , Animais , Crassostrea/fisiologia , Ecotoxicologia , Monitoramento Ambiental , Trato Gastrointestinal/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Golfo do México , Metaplasia/induzido quimicamente , Estômago/efeitos dos fármacos , Estômago/patologia , Poluentes Químicos da Água/toxicidade
10.
J Inorg Biochem ; 225: 111617, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34571403

RESUMO

Arsenic (As) is widely present in the environment in form of arsenite (AsIII) and arsenate (AsV). Oxidative stress and inflammation are believed to be the dominant mechanisms of AsIII toxicity in vivo and in vitro. The aim of this study was to investigate whether zinc (Zn2+) alleviates exogenous gill toxicity in carp induced by AsIII and to gain insight into the underlying mechanisms. Exposure of carp to 2.83 mg As2O3/L for 30 days reduced superoxide dismutase activity by 4.0%, catalase by 41.0% and glutathione by 19.8%, while the concentration of malondialdehyde was increased by 16.4% compared to the control group, indicating oxidative stress. After the exposure of carp to AsIII the expression of inflammatory markers, such as interleukin-6, interleukin-8, tumor necrosis factor α and inducible nitric oxide synthase in gill tissue were significantly increased. In addition, the phosphorylation of nuclear factor kappa-B (NF-κB) was increased by 225%. 1 mg ZnCl2/L can relieve the toxicity of AsIII based on histopathology, antioxidase activity, qRT-PCR and western results. Zn2+ attenuated AsIII-induced gill toxicity that suppressed intracellular oxidative stress and NF-κB pathway by an upregulation of metallothionein. Therefore, the toxic effect of AsIII on the gill cells of carp was reduced. This study provides a theoretical basis for exploring the alleviation of the toxic effects of metalloids on organisms by heavy metals and the biological assessment of the effects.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Arsênio/toxicidade , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Zinco/uso terapêutico , Animais , Carpas , Poluentes Ambientais/toxicidade , Proteínas de Peixes/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/patologia , Inflamação/induzido quimicamente , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metalotioneína/metabolismo , Receptores Toll-Like/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-34517132

RESUMO

Despite extensive research on the toxic effects of microplastics (MPs), there is no obtainable data on the use of phytobioremediation against MPs toxicity in fish. This study aimed to investigate the protective role of lycopene, citric acid, and chlorella against the toxic effects of MPs in African catfish (Clarias gariepinus) using hematology, biochemical, antioxidants, erythron profiles (poikilocytosis and nuclear abnormalities) and the accumulation of MPs in tissues as biomarkers. Five groups of fish received: normal diet (control); MPs (500 mg/kg diet) (Group 2); MPs (500 mg/kg diet) + lycopene (500 mg/kg diet) (Group 3); MPs (500 mg/kg diet) + citric acid (30 g/kg diet) (Group 4); and MPs (500 mg/kg diet) + chlorella (50 g/kg diet) (Group 5) for 15 days. Group 2 had significantly higher amounts of MPs in the stomach, gills, and feces, electrolyte imbalances (HCO3, Fe, Na+, K+, Ca+2, Cl-, and anion gap, hematobiochemical alterations, and decreases in the activities of superoxide dismutase, catalase, total antioxidant capacity, and glutathione S-transferases compared to the control group. Additionally, Group 2 had significant increase in the percentage of poikilocytosis, and nuclear abnormalities in RBC's compared to the control group. The co-treatment of MPs-exposed fish with lycopene, citric acid, and chlorella-supplemented diets ameliorated the hematological, biochemical, and erythron profile alterations, but only slightly enhanced the antioxidant activity. Overall, lycopene, citric acid, and chlorella can be recommended as a feed supplement to improve hematobiochemical alterations and oxidative damage induced by MPs toxicity in the African catfish (C. gariepinus).


Assuntos
Peixes-Gato/metabolismo , Chlorella/crescimento & desenvolvimento , Ácido Cítrico/farmacologia , Brânquias/efeitos dos fármacos , Licopeno/farmacologia , Polietileno/toxicidade , Animais , Antioxidantes/farmacologia , Biodegradação Ambiental , Quelantes de Cálcio/farmacologia , Brânquias/metabolismo , Brânquias/patologia , Estresse Oxidativo , Substâncias Protetoras/farmacologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-34500090

RESUMO

The large-scale loach (Paramisgurnus dabryanus) is one of the most commercially important cultured species. Ammonia nitrogen accumulation is one of the key issue which limited production and animal health in aquaculture, but few of information is available on the molecular mechanisms of ammonia detoxification. We performed transcriptomic analyses of the gill and liver of large-scale loach subjected to 48 h of aerial and ammonia exposure. We obtained 47,473,424 to 56,791,496 clean reads from the aerial exposure, ammonia exposure and control groups, assembled and clustered a total of 92,658 unigenes with an average length of 909 bp and N50 of 1787 bp. Totals of 489/145 and 424/140 differentially expressed genes (DEGs) were detected in gill/liver of large-scale loach after aerial and ammonia exposure through comparative transcriptome analyses, respectively. In addition, totals of 43 gene ontology (GO) terms and 266 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified. After aerial and ammonia exposure, amino acid metabolism pathways in liver of large-scale loach were significantly enriched, suggesting that large-scale loach responded to high exogenous and endogenous ammonia stress by enhancing amino acid metabolism. Besides, the expression of several ammonia transporters (i.e., Rhesus glycoproteins and Aquaporins) in gill of large-scale loach were markedly changed after 48 h of aerial exposure, suggesting that large-scale loach responded to high endogenous ammonia stress by regulating the expression of Rh glycoproteins and Aqps related genes in gill. The results provide valuable information on the molecular mechanism of ammonia detoxification of large-scale loach to endogenous and environmental ammonia loading, will facilitate the molecular assisted breeding of ammonia resistant varieties, and will offer beneficial efforts for establishing an environmental-friendly and sustainable aquaculture industry.


Assuntos
Amônia/administração & dosagem , Cipriniformes/genética , Brânquias/efeitos dos fármacos , Fígado/efeitos dos fármacos , Ar/análise , Poluentes Atmosféricos/análise , Amônia/toxicidade , Animais , Cipriniformes/metabolismo , Brânquias/metabolismo , Brânquias/fisiologia , Fígado/metabolismo , Fígado/patologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcriptoma/efeitos dos fármacos
13.
Sci Rep ; 11(1): 16140, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373575

RESUMO

Heavy metal Cadmium (Cd2+) pollution has become a severe environmental problem for aquatic organisms. In crustaceans, gills (Gi) and hepatopancreas (Hp) play a vital role in the toxicology. However, in Macrobrachium rosenbergill, there are few researches about gill and hepatopancreases responding to Cd2+ stress at a molecular level. In this study, transcriptomic analysis was applied to characterize gene expression profiles of gills and hepatopancreas of M. rosenbergill after Cd2+ exposure for 0 h, 3 h and 3 d. Six cDNA libraries (Gi 0 h, Gi 3 h, Gi 3 d, Hp 0 h, Hp 3 h, and Hp 3 d) were constructed and a total of 66,676 transcripts and 48,991 unigenes were annotated. Furthermore, differentially expressed genes (DEGs) were isolated by comparing the Cd2+ treated time-point libraries (3 h and 3 d group) with the control library (0 h group). The results showed that most of the DEGs were down-regulated after Cd2+ exposure and the number of DEGs among gill groups were significantly higher than those among hepatopancreas groups. GO functional and KEGG pathway analysis suggested many key DEGs in response to the Cd2+ stress, such as metallothionein and Hemocyanin. Additionally, a total of six DEGs were randomly selected to further identify their expressional profile by qPCR. The results indicated that these DEGs were involved in the response to Cd2+. This comparative transcriptome provides valuable molecular information on the mechanisms of responding to Cd2+ stress in M. rosenbergii, which lays the foundation for further understanding of heavy metal stress.


Assuntos
Cádmio/toxicidade , Palaemonidae/efeitos dos fármacos , Palaemonidae/genética , Animais , Regulação para Baixo/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Biblioteca Gênica , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/metabolismo , Masculino , Anotação de Sequência Molecular , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Palaemonidae/metabolismo , Poluentes Químicos da Água/toxicidade
14.
Artigo em Inglês | MEDLINE | ID: mdl-34418533

RESUMO

DCOIT is a co-biocide that is part of the formulation of the commercial antifouling Sea-Nine 211® and although it is "safe to use", negative effects have been reported on the antioxidant defense system of non-target organisms. Therefore, the objective of this research was to verify and compare the response of antioxidant enzymes of juveniles and adults of Amarilladesma mactroides exposed to DCOIT. The animals were exposed to solvent control (DMSO 0.01%) and DCOIT (measured concentration 0.01 mg/L and 0.13 mg/L) for 96 h, then gills, digestive gland and mantle were collected for analysis of the enzymatic activity of glutathione S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT). The results revealed that adults, in relation to juveniles, have low basal activity of GST and SOD enzymes in the gills and digestive gland and high basal activity of SOD and CAT in the mantle. DCOIT did not alter GST activity in the gills of any life stage, while both concentrations decreased SOD and CAT in adults. In the digestive gland, it was observed that DCOIT (0.13 mg/L) decreased the GST activity in adults and CAT in juveniles, and both concentrations of the co-biocide decreased the SOD and CAT in adults. In the mantle, DCOIT (0.13 mg/L) increased CAT in juveniles. We conclude that juveniles have greater basal activity of antioxidant enzymes than adults and, in addition, DCOIT negatively affected the adults of A. mactroides, mainly decreasing the activity of GST, SOD and CAT in the gills and digestive gland of these organisms.


Assuntos
Antioxidantes/metabolismo , Bivalves/efeitos dos fármacos , Tiazóis/toxicidade , Animais , Bivalves/crescimento & desenvolvimento , Bivalves/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Brânquias/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
15.
Fish Shellfish Immunol ; 117: 228-239, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34418554

RESUMO

Superoxide dismutase (SOD) can effectively eliminate of excess ROS, which causes oxidative damage to lipids, proteins, and DNA. In this study, we cloned the CuZn-SOD, cMn-SOD1, and cMn-SOD2 genes in Eriocheir hepuensis, and found that the coding sequence (CDS) lengths were 627 bp, 861 bp and 1062 bp, which encoded 208, 286, and 353 amino acids, respectively. Phylogenetic analysis indicated that all SOD genes were evolutionarily conserved, while cMn-SOD2 had an extra gap (67 amino acids) in the conserved domain compared with cMn-SOD1 without huge changes in the tertiary structure of the conserved domain, suggesting that cMn-SOD2 may be a duplicate of cMn-SOD1. qRT-PCR showed that the three SOD genes were widely expressed in all the tested tissues, CuZn-SOD and cMn-SOD1 were mostly expressed in the hepatopancreas, while cMn-SOD2 was mostly expressed in thoracic ganglia. Under azadirachtin stress, the oxidation index of surviving individuals, including the T-AOC, SOD activity, and MDA contents increased in the early stage and then remained steady except for a decrease in MDA contents in the later stage. qRT-PCR showed that the three SOD genes displayed the same trends as SOD activity in surviving individuals, and the highest expressions of CuZn-SOD in the hepatopancreas, heart, and gill were 14.16, 1.41, and 30.87 times that of the corresponding control group, respectively. The changes were 1.35, 5.77 and 3.33 fold for cMn-SOD1 and 1.62, 1.71 and 1.79 fold for cMn-SOD2, respectively. However, the activity and expression of SOD genes in dead individuals were lower than that observed in surviving individuals. These results reveal that SOD plays a significant role in the defence against azadirachtin-induced oxidative stress.


Assuntos
Proteínas de Artrópodes/genética , Braquiúros/genética , Inseticidas/toxicidade , Limoninas/toxicidade , Superóxido Dismutase/genética , Animais , Feminino , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/metabolismo , Masculino , Miocárdio/metabolismo , Estresse Fisiológico/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-34411697

RESUMO

Tropical gar (Atractosteus tropicus) thrives in aquatic habitats with high levels of total nitrogen (TAN) and unionized ammonia (NH3). However, the tolerance of TAN and NH3, the excretion mechanisms involved, and the effects of these chemicals on routine metabolism are still unknown. Therefore, our objectives were to assess the acute toxicity of TAN and NH3 in A. tropicus juveniles after a 96-h exposure (LC50-96 h) to NH4Cl and after chronic exposure to two concentrations (15% and 30% of LC50-96 h TAN) for 12 days, as well as to evaluate the transcriptional effects associated with Rhesus proteins (rhag, rhbg, rhcg) and ion transporters (NHE, NKA, NKCC, and CFTR) in gills and skin; and to determine the effects of TAN and NH3 on routine metabolism through oxygen consumption (µM g-1 h-1) and gill ventilation frequency (beats min-1). LC50-96 h values were 100.20 ± 11.21 mg/L for TAN and 3.756 ± 0.259 mg/L for NH3. The genes encoding Rhesus proteins and ion transporters in gills and skin showed a differential expression according to TAN concentrations and exposure time. Oxygen consumption on day 12 showed significant differences between treatments with 15% and 30% TAN. Gill ventilation frequency on day 12 was higher in fish exposed to 30% TAN. In conclusion, A. tropicus juveniles are highly tolerant to TAN, showing upregulation of the genes involved in TAN excretion through gills and skin, which affects routine oxygen consumption and energetic cost. These findings are relevant for understanding adaptations in the physiological response of a tropical ancestral air-breathing fish.


Assuntos
Amônia/toxicidade , Proteínas de Transporte/metabolismo , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Nitrogênio/toxicidade , Animais , Proteínas de Transporte/genética , Proteínas de Peixes/genética , Peixes/crescimento & desenvolvimento , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Brânquias/patologia , Transporte de Íons , Larva , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Poluentes Químicos da Água/toxicidade
17.
Artigo em Inglês | MEDLINE | ID: mdl-34416384

RESUMO

Acetochlor and copper are common freshwater pollutants and pose a severe threat to aquatic animals. The toxicity of acetochlor (Ac) and Cu2+ toward goldfish larvae was investigated by subjecting the larvae to different concentrations of acetochlor, Cu2+, and mixed solutions for 1, 3, and 7 days. The length of goldfish larvae exposed to the 100 µg/L Ac + 100 µg/L Cu2+ mixed solution was considerably lower than that of the control on day 3, but there were no significant differences among the other groups. The heart rates of the larvae in 100 µg/L Ac + 100 µg/L Cu2+ mixed solution were higher than those of the control group on days 3 and 7. Acetochlor and Cu2+ also caused severe damage to the liver and intestine of the larvae, especially in the 100 µg/L Ac + 100 µg/L Cu2+ mixed solution group. Indicators related to oxidative stress (hydrogen peroxide, catalase, glutathione peroxidase, and total superoxide dismutase) that could potentially be induced by acetochlor or Cu2+ began to increase on day 7, and the enzyme activities of the larvae in the mixed groups were significantly lower than those in the control group. In contrast, the expression levels of the genes related to antioxidant stress were rapidly down-regulated in all groups on the 7th day after exposure. Briefly, the combined toxicity of acetochlor and Cu2+ was stronger than that of the single toxicity treatments. Furthermore, toxicity toward larvae in the mixed solution group (100 µg/L Ac + 100 µg/L Cu2+) was more obvious.


Assuntos
Cobre/toxicidade , Carpa Dourada/crescimento & desenvolvimento , Toluidinas/toxicidade , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Catalase/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Brânquias/patologia , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Carpa Dourada/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/metabolismo , Intestinos/patologia , Larva , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade
18.
Artigo em Inglês | MEDLINE | ID: mdl-34390845

RESUMO

The present study was aimed to evaluate the toxic effects of a commonly used synthetic pyrethroid, λ cyhalothrin on the common carp, Cyprinus carpio L. The results depicted that 96 h LC50 value of λ cyhalothrin to the fish was 1.48 µg l-1. During 45 days of chronic exposure a significant reduction (p < 0.05) in the RBC, hemoglobin, and hematocrit value of fish was observed in λ cyhalothrin treated fish. Blood glucose, cholesterol and creatinine levels increased significantly, while total protein and albumin were significantly decreased (p < 0.05) in the exposed fish. Moreover, alanine aminotransferase and aspartate aminotransferase levels in the blood also increased significantly (p < 0.05) in the treated fish. In gills and liver, glutathione S-transferase (GST) and glutathione peroxidase (GPx) and in liver GST exhibited a significant initial augmentation followed by a subsequent reduction while catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) level increased markedly with incrementing concentrations of λ cyhalothrin in both the organs. Acetylcholinesterase (AchE) activity in both gills and liver decreased in exposed fish upon addition λ cyhalothrin. However, the hazardous effects of λ cyhalothrin on C. carpio were characterized and portrayed by the development of integrated biomarker response (IBR), and biomarker response index (BRI). GUTS-SD and IT modeling were implied for a better interpretation of the toxicity. These results indicate that exposure to λ cyhalothrin alters the survivability at the acute level and the activity of hematological, plasma biochemical as well as enzymological and stress parameters (in gills and liver) at the sublethal level in C. carpio.


Assuntos
Carpas/metabolismo , Nitrilas/toxicidade , Piretrinas/toxicidade , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Carpas/sangue , Carpas/crescimento & desenvolvimento , Catalase/metabolismo , Exposição Ambiental , Brânquias/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Inseticidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-34375731

RESUMO

Effect of selenium and acidification in freshwater environment was assessed solitary but no reports are available on the impacts of both factors act together. In the present study, effects of combined simultaneous exposure to selenium (Se) and low pH were assessed in Mozambique tilapia, Oreochromis mossambicus. Responses were measured based on antioxidant defenses (enzymatic SOD, CAT, GPx and non-enzymatic GSH), biotransformation enzyme (GST), metallothionein levels (MT), oxidative damage (LPO, CP), Na+/K+-ATPase (NKA) activity in gills and liver tissues and neurotoxicity (acetylcholinesterase, AChE) response in brain tissue. Fish were exposed to combined treatment at different pH levels (7.5, control (optimum pH for tilapia growth); 5.5, low pH) and Se concentrations (0, 10, and 100 µg L-1). Toxicity levels of Se were not significantly different under control and low pH indicating that pH did not affect Se toxicity. Levels of GSH and MT were enhanced in Se-exposed fish at both pH. Combined effects of high Se concentration and low pH decreased SOD and CAT activities and increased those of GPx and GST. However, organisms were not able to prevent cellular damage (LPO and CP), indicating a condition of oxidative stress. Furthermore, inhibition of Na+/K+-ATPase activity was showed. Additionally, neurotoxicity effect was observed by inhibition of cholinesterase activity in organisms exposed to Se at both pH conditions. As a result, the combined stress of selenium and freshwater acidification has a slight impact on antioxidant defense mechanisms while significantly inhibiting cholinesterase and Na+/K + -ATPase activity in fish. The mechanisms of freshwater acidification mediating the toxic effects of trace non-metal element on freshwater fish need to investigate further.


Assuntos
Ácidos/toxicidade , Selênio/toxicidade , Tilápia/crescimento & desenvolvimento , Animais , Antioxidantes/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Doenças dos Peixes/induzido quimicamente , Doenças dos Peixes/metabolismo , Doenças dos Peixes/patologia , Água Doce , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Brânquias/patologia , Concentração de Íons de Hidrogênio , Peroxidação de Lipídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/veterinária , Estresse Oxidativo/efeitos dos fármacos , Tilápia/metabolismo , Poluentes Químicos da Água/toxicidade
20.
Toxins (Basel) ; 13(6)2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204290

RESUMO

This study assessed the impact of increasing seawater surface temperature (SST) and toxic algal abundance (TAA) on the accumulation, tissue distribution and elimination dynamics of paralytic shellfish toxins (PSTs) in mussels. Mytilus coruscus were fed with the PSTs-producing dinoflagellate A. catenella under four simulated environment conditions. The maximum PSTs concentration was determined to be 3548 µg STX eq.kg-1, which was four times higher than the EU regulatory limit. The increasing SST caused a significant decline in PSTs levels in mussels with rapid elimination rates, whereas high TAA increased the PSTs concentration. As a result, the PSTs toxicity levels decreased under the combined condition. Additionally, toxin burdens were assessed within shellfish tissues, with the highest levels quantified in the hepatopancreas. It is noteworthy that the toxin burden shifted towards the mantle from gill, muscle and gonad at the 17th day. Moreover, variability of PSTs was measured, and was associated with changes in each environmental factor. Hence, this study primarily illustrates the combined effects of SST and TAA on PSTs toxicity, showing that increasing environmental temperature is of benefit to lower PSTs toxicity with rapid elimination rates.


Assuntos
Dinoflagelados , Toxinas Marinhas/metabolismo , Mytilus/metabolismo , Animais , Brânquias/efeitos dos fármacos , Gônadas/efeitos dos fármacos , Hepatopâncreas/efeitos dos fármacos , Toxinas Marinhas/toxicidade , Músculos/efeitos dos fármacos , Água do Mar , Temperatura , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...